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IMPACT OF A CONE ON A DEFORMABLE STRING* 

D.G. AGALAROV,B.R. NURIEV and W.A. RAKHMATULIN 

The motion of a flexible deformable string and the process of propagation of the 
stress waves through it, following a transverse impact of a cone, are investigated. 

Equations of motion are derived and an analytic solution of a self-similar problem 
is obtained for an arbitrary, single-valued stress-deformationrelationship.Possible 
wave patterns of the string motion are studied. It is shown that in the case of 
complete encirclement the motion of a string with a single kink is impossible, and 
a new wave pattern of motion caused by a transverse impact is obtained for the first 
time. An established wave system with two kinks is used to derive the conditionsat 

the strong shock waves. A numerical algorithm is given for a scheme with linear 
strengthening and the deformation versus impact rate grapns are constructed. 

The theory of transverse impact on elastic strings when the deviations from the initial 

rectilinear shape are large, has been dealt with in /1,2/. The theory of plane motion of a 
string is well elucidated in /3-6/. 

1. Equations of motion. bet a cone execute a transverse impact at constant velocity 

1‘0 on an infinte, flexible rectilinear string, with the cone axis passing across the lineof 
initial position of the string, and the string slipping off the apex of the cone at the time 

of initial contact. Inverting the problem, we shall consider the motion of the string along 

the cone surface with transverse velocity cI) at infinity. 

We use, as the independent variables, the time t and the Lagrangian coordinate so, the 
latter denoting the distance of the particle in question from some fixed point at the initial 

instant. We shall define the positions of the particles moving along the cone surfaceinterms 

of the radius f (SO, I) of a circle passing through the point in questron,(so, I), andcentral angle 

(1 CS,,,~) of this circle counted from some fixed axial plane. In the absence of the frictional 

and mass forces, the equation of motion of the string on the cone surface has the form 

01 i,T 
P”C : 1,-l-+- 

” 

where v (SU. I) is the velocity of the string particles, 0" is 

the tension, o(r) is the stress referred to the initial plane 

~($0~1) is the unit vector tanqent to the strinq at the point 

ation, 1’ (Q, t)/Fo is the 
section of the string. 

The string moving 

hold: 

normal reaction of the cone and -F0 is 

where i and iare unit vectors along the circumference and the generatrix of the cone, respect- 

ively, passing through the point (~,t),a is the semiangle of the cone and 'p (SO> Q is the angle 
between the string and the circle on the cone surface at the point (so,~). 

(1.1) 

the initial density, T-: (at is 

of transverse cross section, 

(SO, I), e (SO, t) is the relative elong- 

the initial plane of transverse 

along the cone surface is flexible, therefore the following relations 

(1.2) 

Calculating the derivatives of the unit vectors i (SO, I) and I (SO, t), we obtain 

where n"(~o,t) is a unit vector originating at (sO,t) and directed along the radius towards the 

center of the circle passing through the point (so, 0. 
Using the projections on the directions i and i we obtain from (1.11, with (1.2) and (1.3) 

taken into account, 
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We have the following kinematic conditions: 

(1.4) 

(1.5) 

Equations (1.4) and (1.5) and the equations of state 

5 = ci (e) (1.6) 

together represent a closed system of nonlinear equations in partial derivatives, from which 
we must obtain r &,, t), e (so, r),gi (SO, t),a (SO, 0. After this we find the pressure IPI= PFdflie) exert- 
ed by the cone, by projecting the equation (1.1) in the direction of the outward normal to 
the cone surface 

(1.7) 

2. Solution of the problem. The system of equations (1.4), (1.5) and (1.6) implies 
that in the case of a transverse impact with constant velocity, the problem is self-similar. 

Let us introduce the dimensionless variables 

According to the theory of similarity the functions R,O,cp,c sought must depend only on I. 
Consequently, we can write the system (1.3), (1.4) in the form (a prime denotes differentia- 
tion with respect to 2) 

z~(RfYt_ 2R'O')= ~(30coscp)+ O'sinaa,sin Ip, 
0 

=o = povd" (2.2) 

RI? = (1$- e) cos rp, -&-R'=(i+e)sintp (2.31 

Equation (1.7) now becomes 

--I*HY* COB a = PO -- Wac cm a cos cp 
(2.4) 

In addition to the equations (2.2)-(2.4), we have the equation of state (1.6). 
The system (2.2), (2.4) with (2.3) t&en into account yields, after certain manipulations, 

( 5x2 -4) 
1+p 

(rp’--B’sinu)=O (2.5) 

( % -F- .%)&O, P,+$-+cosaeosc 

The last equation shows that so/(! +e) - S+O, since the force of reaction at the cone surface 
PfO and hence P,,#O. Therefore we obtain the following expression, from the firstequation 

of (2.51, for an arbitrary relation G= o(e) : 

9 -y 0 sin a + C, (2.6) 

Let us divide the second equation of (2.3) by the first, and integrate with respect to Z. 
Taking into account (2.6) we obtain 

R = C,icos cp (2.7) 

where C, and C, are integration constants to be determined. 
Under the linearly elastic deformations (o= Ce) and nonlinear relations betweenthestress 

and deformation, we find for d%fld$> 0, do& > o,/(i + e), with the condition za-a&i-Fe)<0 taken 
into account (since Po>O), that 

za - do&e < 0 

Consequently, from the second equation of (2.5) we obtain, for an arbitrary relationship lJ= 
CJ (e) when d%ldeP > 0, 
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I 2 const. (2.8) 

In the case of relations (? = g(e) for which d20/dea<0, the second equation of (2.5) yields 
the integral 

x2 - dooide = (I (2.9) 

The solution (2.9) which is used to find e= e(z) for the given relation 0 = 0 (e) shows, that 
in the case of the relations (I == " (e) ensuring that the wave process is continuous, a Riemann 
wave propagates along the string with the region of constant deformations situated behind the 
Riemann wave. The form of the string described by the formula (2.6) is in this case three- 
dimensional. 

From (2.3), with (2.6) and (2.7) taken into account, we obtain the last integral of the 
problem 

zin a * 
tga=C;! s fi + e) dz 4 Ca (2.10) 

In the case of a straight impact we have O- 0 and v=O at .z = 0. Consequently the constants 
c, and L‘S vanish andthe formulas (2.6) and (2.10) assume the form 

In the region of purely longitudinal motions we have the following one-dimensional equa- 
tion: 

d’?P as &D -=- PO &A as, * e == &- . 5 -= 5 (e) (2.12) 

where w(so,t) denotes the displacement of the string particles in the region of purely long- 
itudinal motions. It can be shown that when d20!dez<0, the equation (2.13) has a solution 

(2.13) 

when dWde2>0, (2.13) yields 
e = const. (2.14) 

The boundary values of the deformation and rate of motion of the particles in the region 
of purely longitudinal motions are found from the conditions at the strong shock wave formed 
at the point at which the transverse motion becomes longitudinal. The constant C, appearing 
in the formulas (2.7) and (2.11) must be determined from the conditions at the point 0 = nl2. 

3. Possible wave motion patterns. Let us write the equations of conservation of 
momentum at the strong shock wave A (Fig-l), taking into account the presenceofa concentrat- 
ed force Q at the point of contact with the cone 

(3.1) 

PO(b-wt) siia $-’ k--- D co9 a - wt sin a = (31 sin a - 6 sin a) (1 + e>) 

p. (b - W~)(DO sin a - wt cos a) = (q cos CL + Q)(i $ e,) 

Here 01. ez and ~,,are respectively, the stress, deformation and velocity of the particles 
in the region of purely longitudinal motions, and b is the velocity of the strongshockwave. 

The kinematic considerations yield 

(3.2) 

If s,#dz, then the first two equations of (3.1) and (3.2) yield 

PO (6 - WY = 01 (i + e*) (3.3) 
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-7-Y 
Substituting (3.3) into the last equa- 
tion of (3.1) we obtain Q= 0, and this 

/ 

contradicts the assumption that a con- 
centrated force is present. From this 

Fig.1 Fig.2 

we deduce that a region of transverse 
motions exists in which the string is 
not in contact with the cone (Fig.2). 
This represents one of the possible 
patterns of motion realized when the 
velocity of the shock is small 

Another scheme of the motion of the string is possible. When transverse motion is present, 
the kink point moves with velocity 

b* = v A 
PO (1 + 4 

We can therefore attain a velocity at which a point at the cone surface corresponding to the 
given kink point moves with velocity greater than b,, i.e. Q> 0. Now according to (3.1) 
and (3.2) the condition Q#O is possible only when 'p = n/2. But the first integralof (2.11) 
shows that at the extreme generatrix where 0 = n/2, ~=((n/2)sina, i.e. cp undergoes a discontin- 
uity. All this implies that another scheme of motion is possible: the region of purely long- 
itudinal motions is adjacent to the cone, a kink forms in the string and its segment adheres 
to the extreme generatrix (0 = z/2) (wedge effect), and a second kink is formed and the string 
follows the surface of the cone, with the form of the string determined by the first integral 
of (2.11) (Fig.3). The latter scheme is realized at large velocities of the shock wave 
t'otga> b,. 

4. Conditions at the strong shock waves. Let us write the equations of conserva- 
tion of momentum and conditions of continuity of the displacements at the strong shock waves, 
in accordance with the wave scheme shown in Fig.3 which is realized when votga >b,. The 
conditions near the first kink A yield 

PO (b - UI~)(V - zo cos a - UJ~ sin a) = (0, sin a - o,J(~ + e,) 

PO (b - wt)(uo sin a - wt sin a) = (Q + (7, eos a)(l + el) 
(4.1) 

where (Jo and pp are the stress and deformation in the segment AB. Near the second kink B 
we have the following conditions: 

po (c - v) re' = -0 CO6 cp (1 + e*) 

PO (c - u) = (ot - 5 sin q7) (1 + e,) 

(4.2) 

It can be found from the solutions, that 

rl3’ = --csinp ~0s v (4.3) 

We note that if r'/sincz is found from the formulas (2.11) and (2.7), then the expressions 
obtained will follow from the two last equations of (4.2). 

Remembering that near the point Bwe have 'p= (x/2)sina, we can find the unknowns b, wt. V, 
e. ~1, e,, Q, e,rO', r'/sin a from the system of equations (4-l)- (4.3) provided that the relationship 
u = 0 (e) is given. Here v is the velocity of the string particles in the segment AB and 
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c is the velocity of the strong 
shock wave B. It can be shown that 

37 6 A 4 6 z 

the system (4.2), (4.3) admits the 
solution e= e2. 

Figure 4 uses the Prandtl com- 
putational method for e, = O.OOZ(a,lao)" = 
0.05 to depict graphs showing the 
dependence of the deformation e on 

6 6 the dimensionless velocity of the 
shock wave & = uolao. Here a0 is the 
elastic wave velocity, a, is the plas- 

Fig.3 Fig.4 tic wave velocity and eo is the 
initial deformation of the string. 
The solid lines correspond to r0 = 0 

and the dashed lines to eo = O.OOl,, the curves 1 correspond to a= 60" and curves 2 to a=l5O. 
We have R = (c/z~)sina at the wave B and, according to the formula (2.7), we obtain 

1. 

2. 

3. 

4. 

5. 

6. 

C,=$sinacos(+sina) 
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